Abstract
In marokite CaMn(2)O(4), all six Mn-O bonds of each MnO(6) octahedron are different because of the Jahn-Teller distortion so that every Mn(3+) (d(4)) ion has six different superexchange interactions with its neighboring Mn(3+) ions. The spin exchange interactions of CaMn(2)O(4) were examined on the basis of spin dimer analysis to find what geometrical parameters of the Mn-O-Mn superexchange paths control the signs and strengths of their spin exchange interactions. Our work correctly describes the magnetic structure of CaMn(2)O(4) observed from neutron powder diffraction measurements and shows that the antiferromagnetic interactions of the Mn-O-Mn paths depend primarily on the asymmetry and the Mn-O bond length of the Mn-O-Mn bridge, but not on the 90 degree angle Mn-O-Mn bond angle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.