Abstract

Abstract— The luminescence of acridine dyes intercalated in DNA was studied as a function of the concurrent binding of metal ions to DNA, in an effort to deduce specific site interactions of the dyes. Two dyes, proflavine (PF) and acridine orange (AO), and two metal ions, silver and mercuric, were used. Both ions quench the fluorescence of the dyes in aqueous solution at room temperature. The metal ions have a different effect on the fluorescence of these dyes when they are intercalated between the base pairs of DNA. The fluorescence of AO is decreased when silver is bound, while the fluorescence of PF is enhanced. Since Ag+ initially binds to GC sites in DNA, which quench the PF fluorescence, it ostensibly ‘turns off’ the quenching by DNA at these sites, and this effect is greater than the quenching effect of the silver ion itself. Hg2+ ion initially binds to AT sites in DNA. Since both dyes fluoresce from AT sites, Hg2+ is expected to quench their fluorescence. This behavior is observed at low r (metal ion/base). At higher r values, however, where Hg2+ is expected to begin binding to GC sites, the fluorescence of PF is enhanced. These quenching turn‐off effects are tentatively interpreted in terms of a change in the structure of the dye/DNA complex which occurs when a metal ion binds at the intercalation site. At 77 K. no fluorescence enhancement is observed when metal ions bind; Ag+ quenches the fluorescence and enhances the phosphorescence of both dyes. Qualitatively similar results are obtained with Hg2+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call