Abstract

A particulate fraction prepared from Mycobacterium phlei grown in a metal-deficient medium exhibited a greatly reduced activity of stearoyl-CoA desaturase compared to that from normally grown cells. Metal deficiency, however, had no effect on the FAD-dependent NADPH-cytochrome C reductase activity, which has been suggested to participate in the desaturation process. When the cells were grown in the deficient medium supplemented with both Fe2+ and Mg2+, the desaturase activity was restored to the normal level. Supplementation with Mg2+ alone promoted growth but did not restore the desaturase activity, whereas Fe2+ alone did cause a significant restoration. Among the various metal ions tested, only Fe2+ and Fe3+ enhanced the formation of desaturase activity in the deficient medium. When added to the assay medium in vitro, Fe2+ and Fe3+ did not stimulate the desaturase activity of the particulate fraction from the deficient cells. Cultivation in the metal-deficient medium had essentially no effect on the levels of cytochromes in the particulate fraction, but dramatically decreased the non-heme iron content and the amount of a high-spin ferric species exhibiting an ESR signal at g=4.3. No labile sulfur could be detected in the normal or metal-deficient particulate fractions. It is concluded that the presence of iron ions in the culture medium is necessary for the synthesis and/or assembly of the terminal portion of the desaturase system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call