Abstract

The thermal performance of the latent heat thermal energy storage unit (LHTESU) can be effectively promoted by metal foam. In the present work, a new structure of metal foam with a two-dimensional porosity gradient (MFTDPG) is proposed to further accelerate the melting process inside the rectangular cavity. The MFTDPG is obtained by placing the metal foam with small porosity near the left wall and the bottom wall. With consideration of natural convection, the melting behavior under different parameters is numerically analyzed, including the direction of the porosity gradient, the temperature of the left wall, and the aspect ratio of the rectangular cavity. The results show that the structure of metal foam with vertical porosity gradient (MFVPG) and horizontal porosity gradient (MFHPG) can reduce the total melting time by 7.65% and 3.37% respectively. The MFTDPG can shorten the total melting time by 12.07% compared with the structure with uniform porosity. Furthermore, the MFTDPG can achieve the shortest melting time and the maximum thermal energy storage rate (TESR) with different wall temperatures and aspect ratios. For example, when the aspect ratio is 2.5, the total melting time of MFTDPG is reduced by 24.35%, and TESR is increased by 25.88%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call