Abstract
Alveolar fluid absorption is a process driven by transepithelial alveolar Na+ transport. Since lungs produce significant amounts of lactate under anaerobic but also under aerobic conditions, glycolysis may conceivably contribute to producing the energy needed for transepithelial Na+ transport and fluid absorption. The effects of inhibition of oxidative phosphorylation or glycolysis on alveolar Na+ transport, fluid absorption, and preservation of alveolar epithelial barrier properties were examined using isolated, fluid-filled rat lungs. Basal lung lactate production was 65 +/- 1.0 mumol/h/g dry wt in the presence of 10 mmol/liter glucose. When oxidative phosphorylation was inhibited with rotenone, cyanide, or the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP), lung lactate production increased 5- to 7-fold within 30 min (P < 0.001). No significant decrease in alveolar Na+ transport was observed over 1 h, whereas a 3-fold increase in passive epithelial permeability was observed. With rotenone and CCCP, but not cyanide, fluid absorption from airspaces was decreased but never abolished. Inhibition of aerobic glycolysis with iodoacetate did not significantly affect alveolar Na+ transport or fluid absorption. In the presence of isoproterenol or dibutyryl cyclic adenosine monophosphate (cAMP) + isobutylmethylxanthine, which have previously been shown to stimulate alveolar Na+ transport, lung lactate production increased 2-fold (P < 0.001). Inhibition of glycolysis depressed stimulated alveolar Na+ and fluid transports (P < 0.001). Inhibition of ion transport by ouabain or amiloride decreased lung lactate production (P < 0.001) under stimulated but not under unstimulated conditions. These observations suggest that glycolysis does not significantly contribute to energy provision for alveolar epithelial Na+ transport in lungs under basal, aerobic conditions.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Respiratory Cell and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.