Abstract

In the recent years, the use of mesoporous silica nanoparticles (MSNs) has been extended in biomedical fields such as cancer therapy, drug and gene delivery, biosensors, and enzyme immobilization. Although nanomaterials are currently being widely used in modern technology, there is a lack of information regarding to the health and environmental implications of manufactured nanomaterials. In the present study, the effects of MSNs and surface functionalized MSNs on cell viability, markers of oxidative damages (mainly intracellular reactive oxygen species (ROS) formation), and oxidative DNA damage were investigated in vitro in rat pheochromocytoma PC12 cells. Following exposure of these nanoparticles (1.95–1000 µg/mL) to PC12 cells for 12 and 24 h, no significant reduction of cell viability was observed compared with control. Moreover, ROS formation and oxidative DNA damage were not significantly changed by these nanoparticles even at high concentrations or prolong exposures. In conclusion, the results showed that neither MSNs nor functionalized MSNs exhibited any remarkable in vitro toxic properties in PC12 cells even at high concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call