Abstract

To study the effect of the dip angle of the inducer blade section in the meridian plane on the cavitation performance of the high-speed centrifugal pump, four schemes of the inducer have been considered only by changing the dip angle of the blade section in the meridian plane while keeping the other geometrical parameters unchanged. Based on the RNG k–ɛ turbulence model and Zwart-Gerber-Belamri cavitation model, three-dimensional numerical simulation of a high-speed centrifugal pump is carried out. The results show that the cavitation performance of high-speed centrifugal pump will be improved when the dip angle of the blade section in the meridian plane increases within a certain range, but the cavitation performance will deteriorate when the dip angle exceeds a certain extent. A moderate raise of the blade section dip angle will change the blade inlet angle and blade outlet angle of the shroud and hub of the inducer, improve the matching of the liquid flow angle with the blade inlet angle and restrain the cavitation at the blade leading edge. The change in the dip angle has a weak influence on the external performance of the high-speed centrifugal pump, indicating that there is almost no effect on the capacity of the inducer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call