Abstract

Steady-state spectra of cytochrome oxidase in phospholipid vesicles were obtained by using hexaammineruthenium(II) and ascorbate as reductants. Cytochrome a was up to 80% reduced in the steady state in coupled vesicles. Upon addition of nigericin or acetate, which decrease delta pH, resulting in an increase in delta psi, cytochrome a became more oxidized in the steady state with no change in the rate of respiration. On the other hand, uncouplers or valinomycin plus nigericin, which lower both delta psi and delta pH, stimulated respiration 2-8-fold and also lowered the steady-state level of reduction of cytochrome a. These experiments indicate that electron transfer between cytochromes a and a 3 is sensitive primarily to the pH gradient. Studies with the reconstituted and the soluble enzyme at various pH values indicated that the pH on the matrix side of the membrane, rather than delta pH, controlled the steady-state level of reduced cytochrome a. Hexaammineruthenium(II) substituted for cytochrome c in measurements of proton pumping by cytochrome oxidase. Dicyclohexylcarbodiimide, which eliminated proton pumping by cytochrome oxidase, decreased the effect of ionophores on the steady-state level of reduced cytochrome a.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.