Abstract
We have investigated the extent to which membrane environment affects the catalytic properties of the malonyl-CoA-sensitive carnitine acyltransferase of liver microsomal membranes. Arrhenius-type plots of activity were linear in the absence and presence of malonyl-CoA (2.5 microM). Sensitivity to malonyl-CoA increased with decreasing assay temperature. Partly purified enzyme displayed an increased K0.5 (substrate concentration supporting half the maximal reaction rate) for myristoyl-CoA and a reduced sensitivity to malonyl-CoA compared with the enzyme in situ in membranes. Reconstitution with liposomes of a range of compositions restored the K0.5 for myristoyl-CoA to values similar to that seen in native membranes. The lipid requirements for restoration of sensitivity to malonyl-CoA were more stringent. When animals were starved for 24 h the specific activity of carnitine acyltransferase in microsomal membrane residues was increased 3.3-fold, whereas sensitivity to malonyl-CoA was decreased to 1/2.8. When enzymes partly purified from fed and starved animals were reconstituted into crude soybean phosphatidylcholine liposomes there was no difference in sensitivity to malonyl-CoA. When partly purified enzyme from fed rats was reconstituted into liposomes prepared from microsomal membrane lipids from fed animals it was 2.2-fold more sensitive to malonyl-CoA than when reconstituted with liposomes prepared from microsomal membrane lipids from starved animals. This suggests that the physiological changes in sensitivity to malonyl-CoA are mediated via changes in membrane lipid composition rather than via modification of the enzyme protein itself. The increased specific actvity of acyltransferase observed on starvation could not be attributed to changes in membrane lipid composition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.