Abstract
Membrane electrode assemblies (MEAs) for a high temperature polymer electrolyte membrane fuel cell (HTPEMFC) were fabricated using acid-doped polybenzimidazole (PBI) as the electrolyte membrane and polytetrafluoroethylene (PTFE) as the electrode binder. PTFE concentrations of 20, 30, and 45 wt% in the electrode were evaluated to determine the optimal binder content. Additionally, the influence of applying a pressing process during MEA fabrication on the electrode performance was examined. When MEA was prepared without the pressing process, the electrode containing 20 wt% PTFE exhibited the best cell performance (338 mA cm−2 at 0.6 V). However, when MEA was prepared with the pressing process, the electrode containing 45 wt% PTFE exhibited the best cell performance (281 mA cm−2 at 0.6 V). This result is because of the inclusion of the pressing process, as gas permeability is hindered by the transfer of excess phosphoric acid from the electrolyte membrane to the electrodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.