Abstract

Quasielastic neutron scattering (QENS) is well suited for studying the dynamics of water in proximity to supported membranes whose structure can be characterized by atomic force microscopy (AFM). Here we use QENS to investigate the effect of an adsorbed peptide (melittin) on water diffusion near a single-supported zwitterionic membrane (DMPC). Measurements of the incoherent elastic neutron intensity as a function of temperature provide evidence of bulk-like water freezing onto the melittin, which AFM images indicate coalesces into peptide-lipid domains as the peptide concentration increases. Analysis of the QENS spectra indicates that, at sufficiently high melittin concentrations, a water component diffusing more slowly than bulk-like water first freezes onto the bound melittin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call