Abstract
Glutamate is the main excitatory neurotransmitter in the retina, but it is neurotoxic when present in excessive amounts. The metabolic dependence of glutamatergic neurons upon glia via the glutamate/glutamine cycle to provide the precursor for neurotransmitter glutamate is well established. Since melatonin has been shown to be neuroprotective in several systems, in the present report, its effect on the glutamate/glutamine cycle activity was examined in the golden hamster retina. Melatonin (0.1-10 nM) significantly increased retinal glutamine synthetase activity but it did not affect L-glutamine release. A characterization of the hamster retinal L-glutamine uptake mechanism was performed. This mechanism was partly Na+-dependent, and it was significantly inhibited by 2-aminobicyclo (2, 2, 1) heptane 2-carboxylic acid (BCH, a selective antagonists for the L-type system) and by alpha-(methylamino)-isobutyric acid (MeAIB, substrate characteristic for the A -type transporter) suggesting the coexistence of these transport systems in the hamster retina. Melatonin (0.1-10 nM) significantly increased total glutamine uptake as well as the BCH and the MeAIB-insensitive transporters activity. On the other hand, melatonin significantly decreased retinal glutaminase activity. On the basis of these results, it might be presumed that hamster retinal glutamate/glutamine cycle activity is regulated by physiological concentrations of melatonin. Furthermore, these findings suggest that a treatment with melatonin could be considered as a new approach to handling glutamate-mediated neuronal degeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.