Abstract

Lead exposure induces DNA damage, oxidative stress, and apoptosis, and alters DNA repair. We investigated the effects of melatonin co-administered to rats during exposure to lead. Three doses of lead acetate (10, 50 and 100 mg/kg/day) were administered to rats during a 6-week period. Lymphocytes were analyzed. Lead exposure decreased glutathione (GSH) levels in blood, and at doses of 100 mg/kg/day and 50 mg/kg/day without melatonin, caused high levels of DNA damage, induced apoptosis, and altered DNA repair. Melatonin co-treatment did not attenuate the effects of lead at 100 mg/kg/day, indicating that the effect of melatonin on GSH reduction is not sufficient to reduce the genotoxic effects of lead at this high dose. After 6 weeks of treatment, decreased weight gain was observed in high lead-dose groups (100 mg/kg/day), with or without melatonin, and in medium-dose groups (50 mg/kg/day) with melatonin, compared with the control group. The protective action of melatonin against lead toxicity is dependent on the dose of lead. Further pharmacological studies are needed to determine whether melatonin acts via melatonin membrane receptors on lymphocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.