Abstract

This paper investigated the effect of coupling of direct current (DC) and pulling rate on dendrites and cooling behaviours of directionally solidified Pb–50Sn alloy. Experimental results indicated that the secondary dendritic arm spacing (SDAS) decreased and temperature gradient increased as increasing current densities. Moreover, temperature rise and SDAS under positive DC were higher than those under negative DC. It was speculated that Joule heating and electromigration were obviously induced by the present DC. The effect of DC on the microstructure and solidification parameters was weakened as the pulling rate increases. The coarsening rate reduced from tf1/3 toward a value of tf0.29 when DC of ±200 A cm–2 were applied. The refinement mechanism of SDAS was discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call