Abstract

Dry milling of graphite in a ball mill represents a versatile one-step mechanochemical process for fabricating mechanochemically functionalized multilayer graphene (MG) bearing different functional groups. The variation of the milling parameters enables to control particle size, shape, functionality, specific surface area, and dispersability of the MG functional fillers. In this study, MG was used as functional nanofiller for the production of SiC/MG nanocomposites. The nanocomposites exhibit significantly improved tribological behavior. The results of rotating pin on disc sliding tests show that with SiC/MG a noticeable improvement of friction and wear behavior under water-lubricated conditions like in slide bearings and face seals can be achieved. Sliding friction systems with the variant SiC + 2% MG–CO2-120 h appear to have the most promising tribological properties, due to the reduced size of the homogeneously distributed graphite particles, which promote the formation of advantageous surface states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.