Abstract

AbstractThe electromigration failure mode and failure rate during accelerated electromigration testing is expected to be strongly affected by the mechanical stress state of Al lines, since tensile stress and compressive stress states favor void growth and hillock formations (extrusions), respectively. During electromigration testing, the mechanical stress state or evolution of mechanical stress of an interconnect is a function of current density and temperature, the two principal variables in electromigration testing. In our experiments, we have observed two different electromigration failure modes by varying the current density and temperatures where (i) the passivated Al lines tested at high current density and high temperatures failed by extrusion or hillock type failure and (ii) the interconnect lines tested at low current density and moderate temperature failed by voiding. A mechanical stress model which incorporates both the thermally generated stress and electromigration induced mechanical stress is invoked to explain the electromigration failure mode selection observed in our experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.