Abstract

The role of spread of skin deformation in activating cutaneous mechanoreceptors at a distance from their threshold receptive fields (RFs) was examined in glabrous skin of the North American raccoon and the squirrel monkey. One feedback-controlled mechanical stimulus probe was used to indent the skin to a controlled depth at a constant velocity, at varying distances from a second probe, which was used to monitor vertical displacement depth and velocity at this distant site. In many instances, the monitor probe was positioned over the RF of a cutaneous mechanoreceptor, and single-unit action potentials were simultaneously recorded from individual fibers of the median or ulnar nerve. With distance from the site of stimulation, there was a systematic, monotonic decline in indentation depth and velocity; velocity fell off with distance more rapidly than depth. The degree of diminution with distance varied with the size, shape, and curvature of the digital or palm pad stimulated. Spread of indentation was more restricted on digital than on palm pads, and was more restricted across monkey skin than across raccoon skin. Spread was less with higher-velocity than with lower-velocity indentations, but was seemingly unaffected by indentation depth. As expected from the findings noted above, the number of spikes discharged by slowly adapting mechanoreceptive afferent fibers declined more rapidly with distance between stimulus site and RF for digital than for palmar RFs, in squirrel monkey than in raccoon skin, and with higher-velocity than with lower-velocity stimuli. Furthermore, the number of spikes occurring during either ramp or early static indentation phases of stimulation dropped to zero more rapidly with distance than did either vertical indentation depth or velocity. Decreases with distance in both indentation depth and velocity acted to restrict the size of suprathreshold RFs. For most units, horizontal components of mechanical stimulation subtracted from the effects of vertical components. It is suggested, on the basis of this and other studies, that many neural and perceptual phenomena usually attributed to central mechanisms of afferent inhibition may be attributable, at least in part, to mechanical properties of the skin. In addition, the present data suggest that regional variations in the two-point limen may be associated with variations in spread of mechanical deformation. The conclusion that glabrous skin and subjacent soft tissues act as a low-pass filter system provides a mechanical basis for the relative efficacy of high-frequency vibratory stimuli in tactile pattern perception.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.