Abstract

Mechanical properties play key roles in the immune system, especially the activation, transformation and subsequent effector responses of immune cells. As transmembrane adhesion receptors, integrins mediate the adhesion events of both cells and cell-extracellular matrix (ECM). Integrin affinity would influence the crosslinking of cytoskeleton, leading to the change of elastic properties of cells. In this study, the cells were treated with F-actin destabilizing agent Cytochalasin-D (Cyt-D), fixed by Glutaraldehyde, and cultivated in hypotonic solution respectively. We used Atomic force microscopy (AFM) to quantitatively measure the elasticity of Jurkat cells and adhesion properties between integrins and vascular cell adhesion molecule-1 (VCAM-1), and immunofluorescence to study the alteration of cytoskeleton. Glutaraldehyde had a positive effect on the adhesion force and Young’s modulus. However, these mechanical properties decreased in a hypotonic environment, confirming the findings of cellular physiological structure. There was no significant difference in the bond strength and elasticity of Jurkat cells treated with Cytochalasin-D, probably because of lower importance of actin in suspension cells. All the treatments in this study pose a negative effect on the adhesion probability between integrins and VCAM-1, which demonstrates the effect of structural alteration of the cytoskeleton on the conformation of integrin. Clear consistency between adhesion force of integrin/VCAM-1 bond and Young's modulus of Jurkat cells was shown. Our results further demonstrated the relationship between cytoskeleton and integrin-ligand by mechanical characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call