Abstract

It has been well demonstrated that a dynamic culture environment improves tissue-engineered bone formation in vitro, but little is known about how cyclical mechanical loading induced bone formation in scaffolds in situ. To mimic the organic and inorganic components and multilevel structure of a bony microenvironment, hydroxyapatite/β tricalcium phosphate/silk fibroin(HA/β-TCP/SF) composite scaffolds with macro- and micropores were fabricated in this study. The mechanical properties and structure of the scaffolds were adjusted based on the ratio of organic and inorganic components and three-dimensional (3D) printing parameters. Dynamic sinusoidal loading with different frequencies was applied to the composite scaffold. Mouse bone precursor cells MC3T3-E1 were seeded on the scaffolds, and the cell compatibility of the scaffolds was investigated by MTT, SEM, and HE. The effect of the loading on bone formation in the scaffold in situ was investigated in a rabbit tibia defect model. The scaffold showed viscoelasticity and hysteresis under dynamic sinusoidal loading with different frequencies. With an increase in HA/β-TCP, the stress and modulus of the scaffolds increased. MTT, SEM, and HE results showed that MC3T3-E1 cells could adhere and proliferate on the composite scaffolds. After loading in vivo, the quantity of newly formed bone and the bone volume fraction increased. Micro-CT, undecalcified Van Gieson (VG) staining, and fluorescent double-labeling results suggested that appropriate cyclical mechanical loading at frequencies of 1 and 10 Hz had positive effects on bone formation in situ and it may play a role in clinical bone defect repair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call