Abstract

Metal Matrix Composites (MMC) considered as one of the ‘advanced materials’ have evoked growing interest during the last three decades due to their high performance and applications in strategic sectors. These composites exhibit unique and attractive properties over the monolithic alloys, but suffer from low ductility, which makes them not so attractive for some of the applications where high toughness is one of the design criteria. This limitation of MMCs has been overcome by resorting to various treatments such as mechanical and thermal loading. Considering very limited reports available on Al alloy reinforced with boron carbide (B4C) particles, this paper presents (i) preparation of Al-6061 alloy reinforced with 1.5–10wt% B4C, (ii) subjecting them to mechanical and thermal treatments and (iii) characterization of all the above samples. Specific ultimate tensile strength and hardness of all the composites were higher than those of matrix. Also, these values increased with increasing amount of particles, with composites containing 8wt% B4C showing the maximum values in all the three conditions. These observations are supported by the uniform distribution of particles in the matrix as observed in their microstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.