Abstract

A composite powder with a fine homogeneous distribution of the reinforcement phase in the whole particle can be obtained by mechanical alloying. Aluminium PM6061 unreinforced, and matrix composite reinforced with Si3N4 and AlN powder, are milled in a high-energy attritor mill and the powder properties are compared with those of the same composite composition mixed in a horizontal low-energy ball mill. The correlation observed between the apparent densities and the milling time, explained by the morphological and microstructural evolution of the powder particles during the high-energy milling process, is used to determine the steady state of the process. At short milling times, the apparent density decreases as the milling time is extended, due to the deformation dominant at this stage; at longer milling times, it starts to increase with increasing milling time due to the piling up of the flattened particles and fracture of the welded particles. When mechanical alloying reaches the steady state, the apparent density is stabilized. A simple model is proposed to illustrate the mechanical alloying of a ductile–brittle component system. The particle size distribution and the microhardness of the mechanically alloyed particles are determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.