Abstract

The effect of treatment in a high-energy mill-attritor on the structure of RuAl-based alloy powder mixtures and the exothermic effects in them is studied. The mechanical activation (MA) of aluminum and ruthenium powder mixtures is found to mill the conglomerates of hard disperse (0.5–2 μm) ruthenium particles in the initial mixtures and to produce composite granules. These granules consist of hard disperse ruthenium particles connected by plastic fcc aluminum particles. The structure of these granules differs from that of the layered granules that form during the MA of powder mixtures of two plastic fcc metals (nickel, aluminum). The cold working of the hard ruthenium particles, which have the hcp lattice and are deformed via twinning, occurs due to a decrease in the coherent domain size (to 120–80 nm) rather than to an increase in the dislocation density (as in the case of the MA of Ni-Al powders). Every granule contains all alloy (composite) components, including disperse or nanosize oxide particles, bound to the components that form an intermetallic matrix during reaction sintering. In granules of both types, MA increases the contact area between both metals entering into the reaction of RuAl (NiAl) formation and sharply decreases the diffusion path length of Al in Ru (Ni). This results in a decrease in the temperature of the onset of reaction alloy formation, which begins now in a solid phase, and in a decrease in the exothermic effect of the monoaluminide formation with the participation of a liquid phase (Al). MA for 15–16 h of powder mixtures provides a microuniform distribution of base and alloying elements and phases in the deformable alloys with an intermetallic matrix that are produced by reaction sintering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call