Abstract
Fatigue tests were conducted for 1800 MPa-class spring steels at various stress ratios. For comparison, similar fatigue tests were conducted for conventional steels whose tensile strength was lower than 1200 MPa. The spring steels exhibited fish-eye fractures, and the origins of these fractures were oxide, TiN and the matrix itself. In contrast, the conventional steels never exhibited fish-eye fractures. The fatigue strength of these steels decreased monotonously as the stress ratio increased, when the fatigue strength was evaluated in terms of stress amplitude. However, the fatigue strength degradation was less than that expected from a modified-Goodman line, and the best fit line was obtained by connecting the fatigue limit at zero mean stress to true fracture strength instead of tensile strength. This research also reviewed application of a power low to the stress ratio effect evaluation. In these results, the difference between the spring and conventional steels was negligible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.