Abstract
The joining zone includes three main parts, which comprise an isothermal solidification zone (ISZ), the athermal solidification zone (ASZ), and a diffusion affected zone (DAZ). Field emission scanning electron microscopy (FESEM) was used here to observe the microstructure equipped with ultra-thin window energy dispersive X-ray spectrometer (EDS) system. Additionally, electrochemical impedance spectroscopy (EIS) and cyclic potentiodynamic polarization tests were conducted to evaluate the effect of the DB process on the corrosion resistance of the Inconel 625 superalloy. In the bonding time period, some Mo- and Cr-rich boride precipitations and Ni-rich γ-solid solution phases with hardened alloy elements, such as Mo and Cr, formed in DAZ and ASZ, respectively, because of the inter-diffusion of melting point depressants (MPD). Moreover, during cooling cycles, Ni-Cr-B, Ni-Mo-B, Ni-Si-B, and Ni-Si phase compounds were formed in the ASZ area at 1110-850 °C. The DAZ area developed by borides compound with cubic, needle, and grain boundary morphologies. The corrosion tests indicated that the DB process led to a reduction in the passive region and increased the sensitivity to pitting corrosion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.