Abstract
Statement of problemSupport structures are essential for the quality of resin-based prostheses made by the digital light processing (DLP), but few studies have evaluated the effect of support structure on the accuracy of zirconia-based anatomic contour prostheses. PurposeThe purpose of this in vitro study was to evaluate the effect of maximum support attachment angle (MSA) on the intaglio surface trueness of anatomic contour prostheses made by DLP and compare the trueness of 2-unit anatomic contour prostheses with that of those produced by milling. Material and methodsAnatomic contour single-unit prostheses were manufactured using DLP and a suspension with 3-mol% yttria-stabilized zirconia. Four different conditions of MSA values to the vertical axis of the object (50, 55, 60, and 65 degrees) were applied (n=10). After printing, postprocessing, and sintering, all successfully produced prostheses were evaluated for intaglio surface trueness by considering the root mean square (RMS). Using the MSA showing the highest trueness, the 2-unit prostheses made by DLP (DLP group) were compared with milled (MIL group) prostheses in terms of intaglio accuracy (n=10). One-way analysis of variance and a post hoc pairwise comparison or independent t test were used for trueness analysis (α=.05). ResultsThree MSA groups (50, 55, and 60 degrees) were successfully produced with significant differences between the trueness of the single-unit prostheses for the groups with different MSA values (P<.05). The highest trueness was in the 50-degree MSA group. The 2-unit prostheses of the DLP group with 50-degree MSA showed significantly lower trueness than those of the MIL group (P<.05); however, the RMS values of both groups were lower than 50 μm. ConclusionsThe intaglio surface trueness of anatomic contour DLP-generated prostheses can be improved by changing the MSA. The 50-degree MSA was beneficial for the accuracy of both single-unit and 2-unit DLP-generated prostheses, produced within clinically acceptable limits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.