Abstract
Small cell lung cancer (SCLC) is one of lethal cancers resulting in very low 5-year-survival rate. Although its clinical treatment largely relies on chemotherapy, SCLC cell physiology in three-dimenstional (3D) matrix has been less explored. In this work, the tumor microenvironment is reconstructed with decellularized porcine pulmonary extracellular matrix (dECM) with hyaluronic acid. To modulate matrix stiffness, the methacrylate groups are introduced into both dECM and hyaluronic acid, followed by photocrosslinking with photoinitiator. The stiffness of the resulting dECM-based hydrogel covers the stiffness of normal or cancerous tissue with varying dECM content. The proliferation and cancer stem cell marker expression of encapsulated SCLC cells are promoted in a compliant hydrogel matrix, which has a low shear modulus similar to that of the normal tissue. The hepatocyte growth factor (HGF) that induces SCLC cell invasion and chemoresistance markedly increases invasiveness and gene expression levels of CD44 and Sox2 in the hydrogel matrix. In addition, HGF treatment causes higher resistance against anticancer drugs (cisplatin and paclitaxel) in the 3D microenvironment. These findings indicate that malignant SCLC can be recapitulated in a pulmonary dECM-based matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.