Abstract

Effect of nitrogen and argon matrices on the C-H asymmetric stretching and bending infrared frequencies of the acetylene molecule, C(2)H(2), has been studied by matrix isolation experiments as well as by calculations at MP2 level of theory. The complexes of C(2)H(2) in nitrogen and argon matrices, viz., C(2)H(2)(N(2))(m) (with m=2-8) and C(2)H(2)(Ar)(n) (with n=2-10) are theoretically explored. The computed acetylenic C-H asymmetric stretch in C(2)H(2)-nitrogen complexes shows a redshift of 3.0 to 11.9 cm(-1) compared with the frequencies of the free acetylene molecule, and a corresponding blueshift of 7.4 to 26.2 cm(-1) when C(2)H(2) is complexed with argon atoms. The trends in the computed shifts are in good agreement with the experiments. The molecular electrostatic potential minimum of C(2)H(2) becomes more negative when complexed with nitrogen than on complexation with argon. This observation implies a greater basic character for C(2)H(2) in the nitrogen matrix, favoring the formation of H-pi(C(2)H(2)-MeOH) complex as compared to that in the Ar matrix. Experimentally the preferential formation of H-pi(C(2)H(2)-MeOH) complex in the N(2) matrix has indeed been observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.