Abstract

BackgroundIntrauterine growth retardation due to maternal under-nutrition increases susceptibility to obesity and insulin resistance. We reported earlier in the offspring of mineral or vitamin restricted rat dams, a high body fat percentage and decreased insulin secretion to glucose challenge. This study determined whether or not central adiposity and altered adipocytokine profile were associated with high body fat content.MethodsBody fat percentage; glucose, insulin and adipocytokine levels in fasting plasma and fresh weights of epididymal fat pads were determined in the six months old male offspring of Wistar NIN rat dams on chronic 50 percent restriction of vitamins or minerals throughout their growth, gestation, lactation and weaned on to restricted diets or restricted mothers/offspring rehabilitated from different time points.ResultsIn line with high body fat percent, chronic restriction of vitamins and minerals increased the epididymal fat pad weight. Maternal vitamin restriction decreased plasma adiponectin and increased leptin levels whereas mineral restriction decreased both. Both the treatments did not affect plasma TNF-α levels or insulin resistance status (HOMA-IR). Rehabilitation from parturition but not weaning, rescued the changes in the offspring.ConclusionHigh body fat percentage in the offspring of vitamin restricted or mineral restricted rat dams was associated with increased abdominal adiposity (epididymal fat pad weight) and differential expression of adipocytokines but not insulin resistance. The changes could be mitigated by rehabilitation from birth but not weaning.

Highlights

  • Intrauterine growth retardation due to maternal under-nutrition increases susceptibility to obesity and insulin resistance

  • Epididymal fat pad weight and insulin resistance In line with the high body fat percentage observed in the offspring of VR and MR rat dams, the fresh weight of the epididymal fat pads was significantly higher in them at six months of age (Table 1 &2)

  • Rehabilitating VR mothers from parturition and their offspring from weaning (VSP) but not weaning VR offspring to control diet (VSW) reversed the body fat percentage and epididymal fat pad weight to levels comparable to controls (Table 1). While both the rehabilitation regimes mitigated the maternal MR induced increase in body fat percentage of the offspring only partially, MSP but not MSW could rescue the increased weight of the epididymal fat pad (Table 2). Despite their significant effects on the body fat percentage and epididymal fat pad weight in the offspring, neither maternal VR nor MR had any effect on their insulin resistance (IR) as assessed by HOMA IR (Table 1 &2)

Read more

Summary

Introduction

Intrauterine growth retardation due to maternal under-nutrition increases susceptibility to obesity and insulin resistance. We reported earlier in the offspring of mineral or vitamin restricted rat dams, a high body fat percentage and decreased insulin secretion to glucose challenge. Maternal under-nutrition impairs intrauterine development and increases adiposity, insulin resistance (IR) and associated metabolic disturbances in the later life of the offspring [1]. We reported earlier that chronic 50 percent restriction of minerals (MR) or vitamins (VR) in Wistar NIN (WNIN) rat dams increased the body fat percentage in offspring and decreased their insulin response to glu-. We report whether or not increased body adiposity in the VR and MR offspring is associated with increased abdominal adiposity, altered expression of adipocytokines and insulin resistance. Considering that maternal VR and MR increased body adiposity and impaired glucose stimulated insulin secretion in the offspring, we have determined whether or not altered expression of adipocytokines was associated with these changes

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.