Abstract
Semiconductor mode-locked lasers are a very attractive laser pulse source for high accuracy length metrology. However, for some applications, this kind of device does not have the required frequency stability. Operating the laser in hybrid mode will increase the laser pulse repetition frequency (PRF) stability. In this study it is showed that the laser PRF is not only locked to the master oscillator but also maintains the same level of stability of the master oscillator.The device used in this work is a 10 mm long mode-locked asymmetrical cladding single section InAs/InP quantum dash diode laser emitting at 1580 nm with a pulse repetition frequency of ≈4.37 GHz. The laser nominal stability in passive mode (no external oscillator) shows direct dependence with the gain current and the stability range goes from 10−4 to 10−7. Several oscillators with different stabilities were used for the hybrid-mode operation (with external oscillator) and the resulting mode-locked laser stability compared. For low cost oscillators with low stability, the laser PRF stability achieves a value of 10−7 and for higher stable oscillation source (such as oven controlled quartz oscillators (OXCO)) the stability can reach values up to 10−12 s).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.