Abstract

A major challenge in computer-aided diagnostic (CAD) schemes for nodule detection on chest radiographs is the detection of nodules that overlap with ribs. Our purpose was to develop a technique for false-positive reduction in a CAD scheme using a rib-suppression technique based on massive training artificial neural networks (MTANNs). We developed a multiple MTANN (multi-MTANN) consisting of eight MTANNs for removing eight types of false positives. For further removal of false positives caused by ribs, we developed a rib-suppression technique using a multi-resolution MTANN consisting of three different resolution MTANNs. To suppress the contrast of ribs, the multi-resolution MTANN was trained with input chest radiographs and the teaching soft-tissue images obtained by using a dual-energy subtraction technique. Our database consisted of 91 nodules in 91 chest radiographs. With our original CAD scheme based on a difference image technique with linear discriminant analysis, a sensitivity of 82.4% (75/91 nodules) with 4.5 (410/91) false positives per image was achieved. The trained multi-MTANN was able to remove 62.7% (257/410) of false positives with a loss of one true positive. With the rib-suppression technique, the contrast of ribs in chest radiographs was suppressed substantially. Due to the effect of rib-suppression, 41.2% (63/153) of the remaining false positives were removed without a loss of any true positives. Thus, the false-positive rate of our CAD scheme was improved substantially, while a high sensitivity was maintained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.