Abstract

Innovative low transformation temperature (LTT) welding filler materials are featuring a characteristic chemical composition which favors the formation of martensite at comparatively low temperatures. This permits deliberate adjustment of welding residual stresses. Even though numerous investigations can be found in the literature on this issue, they provide only little insight into the interaction between phase transformation and resulting welding residual stresses. For this purpose, a component weld test was performed in a special large-scale testing facility. The results illustrate that the desired residual stress control by using LTT alloys is actually feasible. With increasing shrinkage restraint, however, higher tensile residual stresses are formed in transverse direction of the weld. By contrast, the residual stress level in longitudinal weld direction is nearly independent of the restraint conditions. On-line stress analysis revealed that the amount of stress reduction during cooling of the individual weld runs is dependent on the weld volume undergoing phase transformation. Overall, evidence was furnished that the approach of residual stress engineering by LTT alloys is suitable even in the case of large-scale multilayer welding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call