Abstract

The effect of marine polyunsaturated fatty acids on biofilm formation by the human pathogens Candida albicans and Candida dubliniensis was investigated. It was found that stearidonic acid (18:4 n-3), eicosapentaenoic acid (20:5 n-3), docosapentaenoic acid (22:5 n-3) and docosahexaenoic acid (22:6 n-3) have an inhibitory effect on mitochondrial metabolism of both C. albicans and C. dubliniensis and that the production of biofilm biomass by C. dubliniensis was more susceptible to these fatty acids than C. albicans. Ultrastructural differences, which may be due to increased oxidative stress, were observed between treated and untreated cells of C. albicans and C. dubliniensis with formation of rough cell walls by both species and fibrillar structures in C. dubliniensis. These results indicate that marine polyunsaturated fatty acids may be useful in the treatment and/or prevention of biofilms formed by these pathogenic yeasts.

Highlights

  • Candida albicans and Candida dubliniensis are dimorphic yeasts, able to grow both as yeasts and mycelia

  • In individuals whose immune system is compromised, such as those that are HIV positive, C. albicans can cause diseases ranging from superficial infections to deep seated mycoses [4,5]

  • Since biofilm associated infections have many clinical and economic consequences, recent research into the pathogenicity of Candida species has focused on the prevention and management of these biofilms

Read more

Summary

Introduction

Candida albicans and Candida dubliniensis are dimorphic yeasts, able to grow both as yeasts and mycelia. Several members of the genus Candida exist as commensals of the human gastrointestinal and. In individuals whose immune system is compromised, such as those that are HIV positive, C. albicans can cause diseases ranging from superficial infections to deep seated mycoses [4,5]. Candida dubliniensis is a species closely related to. C. albicans and a causative agent of oropharyngeal candidiasis in immunocompromised humans [5,6]. Biofilm formation is a major virulence factor in the pathogenicity of Candida species, partly due to their increased resistance to antifungal treatment [7,8]. Since biofilm associated infections have many clinical and economic consequences, recent research into the pathogenicity of Candida species has focused on the prevention and management of these biofilms. Fatty acids have been known to have antibacterial [9] and antifungal properties and especially capric acid (10:0) and lauric acid (12:0) are known to have anti-Candida effects by inhibiting growth of planktonic cells [10] and butyric acid (4:0)

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call