Abstract

Freely receding evaporating sessile droplets of perfectly wetting liquids, for which the observed finite contact angles are attributed to evaporation, are studied with a Mach-Zehnder interferometer. The experimentally obtained droplet shapes are found to depart, under some conditions, from the classical macroscopic static profile of a sessile droplet. The observed deviations (or the absence thereof) are explained in terms of a Marangoni flow due to evaporation-induced thermal gradients along the liquid-air interface. When such a Marangoni effect is strong, the experimental profiles exhibit a maximum of the slope at a certain distance from the contact line. In this case, the axisymmetric flow is directed from the contact line to the apex (along the liquid-air interface), hence delivering more liquid to the center of the droplet and making it appear inflated. These findings are quantitatively confirmed by predictions of a lubrication model accounting for the impact of the Marangoni effect on the droplet shape.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.