Abstract

We have examined the stability and aerosol performance of the pharmaceutical protein recombinant humanized anti-IgE mono-clonal antibody (rhuMAbE25) spray dried with mannitol. The aerosol performance was measured by the fine particle fraction (FPF), and stability was assessed by the formation of soluble aggregates. When mannitol was added to the spray-dried rhuMAbE25 formulation, its ability to stabilize the protein leveled off above about 20% (w/w, dry basis). The FPF of the spray-dried formulations was stable during storage for rhuMAbE25 containing 10% and 20% mannitol, but the 30% formulation exhibited a dramatic decrease upon storage at both 5°C and 30°C, due to mannitol crystallization. We tested the addition of sodium phosphate to a 60:40 rhuMAbE25:mannitol (w:w) mixture, which otherwise crystallized upon spray drying and yielded a nonrespirable powder. The presence of sodium phosphate was successful in inhibiting mannitol crystallization upon spray drying and dramatically lowering the rate of solid-state aggregation. However, over long-term storage some crystallization was observed even for the phosphate-containing samples, concomitantly with increased particle size and decreased suitability for aerosol delivery. Therefore, the physical state of mannitol (i.e., amorphous or crystalline) plays a role both in maintaining protein stability and providing suitable aerosol performance when used as an excipient for spray-dried powders. Agents which retard mannitol crystallization, e.g., sodium phosphate, may be useful in extending the utility of mannitol as an excipient in spray-dried protein formulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.