Abstract

Complexes of first row transition metals are a promising class of tunable and inexpensive catalysts for electrochemical energy applications. Although considerable efforts have been devoted to the activity studies, little attention has been paid to the effects of different immobilization modes on reaction mechanisms. In this work, we studied the influence of covalent immobilization on the performance of Mn tetraphenylporphyrin in oxygen evolution (OER) and oxygen reduction (ORR) reactions. Ligation of the complex to carbon surface was attained via potentiostatic electroreduction of porphyrin diazonium salt with the following metalation and electrodeposition time was found to be a convenient tool to control the amount of electrochemically active catalyst on the electrode. Cyclic voltammetry suggests that the increase of porphyrin surface concentration upon prolonged electrodeposition shortens average Mn–Mn distance and proportionally enhances probability of at least two metal atoms simultaneously participat...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.