Abstract

This work investigates the effect of maltodextrin addition on the drying kinetics and the stickiness during spray drying of tomato pulp in dehumidified air. A pilot-scale spray dryer was employed for the spray-drying process. The modification made to the original design consisted in connecting the spray dryer inlet air intake to an absorption air dryer. Twenty-seven different experiments were conducted varying the dextrose equivalent (DE) of the maltodextrin, the ratio (tomato pulp solids)/(maltodextrin solids), and the inlet air temperature. Data for the residue remaining on the walls were gathered. Furthermore, the effect of maltodextrin addition on the drying kinetics and the stickiness of the product was investigated using a numerical simulation of the spray-drying process modeled with the computational fluid dynamics (CFD) code Fluent. The code was used to determine the droplet moisture content and temperature profiles during the spray-drying experiments conducted in this work. The stickiness was determined by comparing the droplet temperature with its surface layer glass transition temperature (Tg ). The Tg was determined using a weighted mean rule based on the moisture content profiles calculated by the CFD code and the experimental data of Tg , which were obtained for the different tomato pulp and maltodextrin samples and fitted to the Gordon and Taylor model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call