Abstract

The optical rectification crystals would be damaged under the high-power femtosecond laser radiation during the generation of terahertz radiation in optical rectification, limiting the further increase of the intensity and energy conversion efficiency of terahertz radiation. In this paper, the interaction mechanism between the femtosecond laser pulse and optical rectification crystals has been analyzed and the prediction model of damage threshold of LiNbO3 crystal under femtosecond laser has also been built up. On the basis, the evolution of free electron in crystal material has been discussed in detail, and the influence of the major parameters of the femtosecond laser on the damage threshold has been analyzed quantitatively. The results show that, the density of generated free electron increases with the increasing of the intensity and the pulse duration of femtosecond laser. For the given intensity of femtosecond laser, the damage threshold of the LiNbO 3 crystal increases with the increasing of the pulse duration. The results for the damage threshold are consistent quite well with the experimental data reported in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.