Abstract

Magnetic field-driven domain wall motion is investigated in closely spaced sub-100 nm wide Co nanowires. Anticorrelations appear in the spatial distribution of pinning sites within weakly interacting nanowires, with a reduced probability of pinning adjacent to another pinning site over a mean correlation length similar to the line width roughness. In contrast, strong magnetostatic interactions between domain walls in adjacent nanowires eliminate the correlations, reducing the domain wall propagation distance for a given applied magnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call