Abstract

AbstractIn the present analysis, we investigate the magneto hydrodynamics (MHD) Casson fluid flow on the stretching/shrinking surface with mass suction/injection. The modeled boundary problem leads to highly partial differential equations, which are then transformed to ordinary differential equations by utilizing similarity variables. Finally, the resulting ordinary differential equations are explained analytically by using different controlling parameters and corresponding boundary conditions. The results of various parameters, for example, porous medium parameter, magnetic parameter, suction/injection parameter can be analyzed using graphical form. The outcomes of the investigation reveals that, for the stretching scenario, transverse velocity and tangential velocity both drop as the values of the Casson fluid parameter rise, whereas for the shrinking case, transverse velocity rises. The present problem has demands in industrial and engineering applications for instance glass filament, paper and food manufacture, crystal growth and liquid films, and printing technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call