Abstract

Coagulation with synthetic chemicals has been used to treat a wide range of industrial effluents. Herein, the unique characteristics of industrial effluents being detrimental to the environment warrants urgent resource-efficient and eco-friendly solutions. Therefore, the study investigated the use of two magnetized coagulants (chitosan magnetite (CF) and rice starch magnetite (RF)), prepared via co-precipitation in three different ratios (1:2, 1:1 and 2:1) of natural coagulants (chitosan or rice starch) and magnetite nanoparticles (F) as alternative coagulants to alum for the treatment of wastewater. A Brunauer–Emmett–Teller (BET) analyzer, an X-ray diffraction (XRD) analyzer, and energy-dispersive X-ray (EDX) spectroscopy were used to characterize the surface area, crystal structure, and elemental composition of the coagulants. The influences of settling time (10–60 min) on the reduction of turbidity, color, phosphate, and absorbance were studied. This was carried out with a jar test coupled with six beakers operated under coagulation conditions of rapid stirring (150 rpm) and gentle stirring (30 rpm). Wastewater with an initial concentration of 45.6 NTU turbidity, 315 Pt. Co color, 1.18 mg/L phosphate, 352 mg/L chemical oxygen demand (COD), and 73.4% absorbance was used. The RF with a ratio of 1:1 was found to be the best magnetized coagulant with over 80% contaminant removal and 90% absorbance. The treatability performance of RF (1:1) has clearly demonstrated that it is feasible for wastewater treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.