Abstract

By using a simple method, the effects of a substitutional magnetic impurity on the conductance of metallic single-wall carbon nanotubes, lying between two spin-polarized electron reservoirs, are studied. It is demonstrated how the differential conductance depends sensitively on the radius and length of nanotube as well as the position of impurity. It is shown that magnetic impurity produces more effect for the spin-polarized current between the antiparallel reservoirs than the parallel ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.