Abstract

Using a variational approach, the binding energy of shallow hydrogenic impurities in a semimagnetic parabolic quantum dot is calculated within the effective mass approximation. The binding energy is computed for Cd 1-x in Mn x in Te / Cd 1-x out Mn x out Te structures as a function of the dot size in an external magnetic field. The results show that the impurity binding energy (i) increases with the reduction in dot sizes (ii) decreases when the magnetic field is increased for a given dot and (iii) increases to a maximum value at 100 Å and then decreases as the size of the dot increases beyond 100 Å for a realistic model. Spin polaronic shifts are estimated using a mean field theory. These results are compared with the existing literatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.