Abstract

We investigate the effect of an external magnetic field on the velocity autocorrelation function and the "caging" of the particles in a two-dimensional strongly coupled Yukawa liquid, via numerical simulations. The influence of the coupling strength on the position of the dominant peak in the frequency spectrum of the velocity autocorrelation function confirms the onset of a joint effect of the magnetic field and strong correlations at high coupling. Our molecular dynamics simulations quantify the decorrelation of the particles' surroundings: the magnetic field is found to increase significantly the caging time, which reaches values well beyond the time scale of plasma oscillations. The observation of the increased caging time is in accordance with findings that the magnetic field decreases diffusion in similar systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call