Abstract

This work aims to study the effect of magnetic field on the time-dependent flow of an insulated disk executing non-torsional oscillation in its own plane and a Newtonian fluid at infinity while they are initially rotating at the same speed about two vertical axes. It is shown that the presence of a magnetic field causes a resistive force and the required time to reach the periodic state becomes shorter. Further, it is demonstrated that there is an excellent agreement between the exact solution that is appropriate for all values of time and the periodic solution that is valid after the periodicity of the flow starts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.