Abstract
Water is considered as the working fluid of wet steam turbine units. The importance of a purposeful change in the thermophysical properties of water used for energy needs is indicated. A reagent-free method (transverse magnetic field of permanent magnets) of influence on water is proposed. Literature data on currently available papers dedicated to the study of water properties is presented. It is shown that the mechanisms of influence of external physical fields on the physicochemical and thermophysical properties of water have not been elucidated as of now. It is emphasized that the properties of distilled water during exposure and after exposure to physical fields are even less studied. The currently existing contradictions between theoretical ideas about the properties of water and experimental results are considered. It was found that currently there are no correct methods and equipment capable of indicating changes in water properties in real time. As a solution, the equipment and method of analyzing the optical density of distilled water is proposed. The shortcomings of most existing experimental works on the study of the influence of physical fields on the optical density of water are analyzed. The requirements for devices intended for measuring the optical density of distilled water are formulated. A stand was made and experimental work on the study of the dependence of the optical density of distilled water on the induction of a magnetic field that affects it was carried out. It is proved that the magnetic field affects the optical density of distilled water in the infrared range of wavelengths both in the direction of increase (4.1%) and in the direction of decrease (1.7%) depending on the induction of the magnetic field and the speed of water flow through the working section of magnetization device. A hypothesis explaining the obtained result is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.