Abstract
The magnetoplastic effect in mechanics of nonmagnetic crystals is attributed to spin evolution in the spin-selective nanoscale reactor created by electron transfer from a dislocation to a stopper. In this “dislocation + stopper” system, dislocation depinning is facilitated because the Coulomb attraction between the dislocation and the stopper is switched off. Since magnetic field stimulates the singlet-to-triplet conversion of the nanoscale reactor (the reverse electron transfer is forbidden), the nanoscale reactor with switched-off Coulomb interaction has a longer lifetime. The resulting increase in depinning rate and dislocation mobility provides a physical explanation for magnetoplasticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.