Abstract
The fabrication of micro products is gradually expanding due to their need in micro feature-based frameworks, which require a multitude of functions to be integrated. Electro discharge deposition (EDD) is an emerging additive manufacturing process to create micro products. In the present paper, simulation of an EDD process has been investigated in the presence and absence of maximum magnetic flux density. In the first stage of simulation, a thermo–physical model has been developed to find the melt volume in single pulse discharge. In the second stage, initially the optimum orientation and location of the magnet to be placed around the EDD plasma are identified, and subsequently, in the presence of maximum magnetic flux density, heavy species transport is used to study the impact of the process on the height and weight of deposition. Experiments are carried out to validate the simulation results. From the results obtained it is observed that the height of deposition is increased by 23.5% in the presence of the magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.