Abstract
The effect of a high magnetic field up to 12 T and a high hydrostatic pressure up to 12 kbar on the stability of the metamagnetic isostructural phase transition and the multicaloric effect of Fe49Rh51 alloy has been studied. The phase transition temperature shifts under the magnetic field and the hydrostatic pressure on with the rates of dTm/μ0dH = −9.2 K/T and dTm/dP = 3.4 K/kbar, respectively. The magnetocaloric and multicaloric (under two external fields) effects were studied via indirect method using Maxwell relations. The maximum of the entropy change is increasing toward the high temperature region from ∆S~2.5 J/(kg K) at 305 K to ∆S~2.7 J/(kg K) at 344 K under simultaneously applied magnetic field of 0.97 T and hydrostatic pressure of 12 kbar. The obtained results were explained using the first-principle calculations of Gibbs energies and the phonon spectra of the ferromagnetic and the antiferromagnetic phases. Taking into account the low concentration of antisite defects in the calculation cells allows us to reproduce the experimental dTm/dP coefficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.