Abstract

Glucaric acid has been successfully produced in Escherichia coli and fungus. Here, we first analyzed the effects of different metal ions on glucaric acid production in the engineered Saccharomyces cerevisiae Bga-3 strain harboring the glucaric acid synthesis pathway. We found that magnesium ions could promote the growth rate of yeast cells, and thus, increase the glucaric acid production by elevating the glucose and myo-inositol utilization of Bga-3 strain. RNA-Seq transcriptome analysis results showed that the upregulation of genes involved in the gluconeogenesis pathway, as well as the downregulation of genes associated with the glycolysis pathway and pentose phosphate pathway in response to MgCl2 were all benefit for the enhancement of the glucose-6-phosphate flux, which was the precursor for myo-inositol and glucaric acid. In addition, we found that MgCl2 could also increase the activity of MIOX4, which was also crucial for glucaric acid synthesis. At last, a final glucaric acid titer of 10.6 g/L, the highest reported titer, was achieved in the fed-batch fermentation using a 5-L bioreactor by adding 100 mM MgCl2. Our findings will provide a new way of promoting the production of other chemicals in the engineered yeast cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call