Abstract

The effect of divalent cations on lipid-bilayer-assisted DNA-functionalized nanoparticle (DNA-NP) assembly has been studied. We previously reported the lateral diffusion of DNA-NPs on planar lipid bilayer patches, owing to the mobility of lipid molecules in a supported lipid bilayer (SLB), and the resultant two-dimensional (2D) assembly of DNA-NPs. We here report the structural change of the assembled 2D DNA-NP lattices by magnesium ion concentration control on a successfully formed uniform SLB. In the magnesium-free buffer solution, DNA-NPs on SLB loosely assembled into quasi-hexagonal ordered lattices. In buffer solution containing 1 mM magnesium acetate, the interparticle distance of DNA-NPs decreased and the lattice structure became disordered. In buffer solution containing 5 mM magnesium acetate, the structure of DNA-NP arrays changed markedly and square lattices appeared. It is suggested that magnesium ions affected DNA molecules, which linked nanoparticles, and enabled the control of the structure of DNA-NP 2D arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.